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PARTICLE MOTION IN A PLASTIC MEDIUM

WITH ALLOWANCE FOR PARTICLE ATTRITION

UDC 539.3V. L. Kolmogorov and E. A. Zalazinskaya

Mathematical simulation of impact-induced deep penetration of an absolutely rigid spherical particle
into an ideally plastic medium is performed; the law of particle motion and the distance covered by
the particle are determined. The problem for a particle whose size varies owing to attrition is solved.
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Implantation of solid particles into plastic materials is studied in a large number of papers (see, e.g., [1–4]).
In known solutions, however, the process of particle penetration into a plastic half-space was considered without
allowance for the change in particle size due to its attrition. In the present paper, mathematical simulation of the
process of deep penetration of a spherical particle into an ideally plastic medium is performed and the problem of
particle wear is solved. The variational principle and the phenomenological theory of destruction described in [5] are
used. Particle entry into the plastic medium is accompanied by the formation of a crater; during subsequent motion
of the particle, the entry orifice collapses. During particle attrition, its mass remains in the plastic medium; the
total volume of the particle and the medium remains unchanged. We consider the motion of the spherical particle
at the stage when the particle has penetrated rather deeply into the plastic medium. In solving the boundary-
value problem, it was assumed that a plastic-flow region is formed around the particle, and this region also takes
a spherical form as the particle penetrates into the plastic medium (Fig. 1). The assumption of the spherical flow
region around the particle was used because propagation of disturbances outside the boundaries of the plastic region
cannot be significant, which is confirmed experimentally [6–9]. The flow region around the particle moves together
with the particle. Note, the size of the plastic-flow region is determined by solving the corresponding variational
problem.

In solving the boundary-value problem, the principle of virtual velocities and stresses is used as the basic one.
Integration of differential equations of the boundary-value problem of mechanics of continuous media is replaced by
an equivalent solution on virtual states of the variational equation [10].

In solving the boundary-value problem, it is assumed that the solid body moving with a velocity v(t) and the
plastic-flow region localized around the body are attached to a spherical coordinate system (r, ϕ, θ), which moves
with a velocity v in the reference system (x, y, z). The particle radius decreases in accordance with the accepted
wear model. The kinematically admissible pattern of the flow around a solid spherical particle by a plastically
deformable medium is shown in Fig. 2.

The specific feature of motion of the particle and the plastic-flow region localized around the particle is
that the moving (in the reference system) boundary S0 of the plastic-flow region is the discontinuous surface of
the tangential component of the velocity vector, i.e., the surface of a strong discontinuity (in the present dynamic
problem, the wave of a strong discontinuity [11]). The normal component of the velocity vector of material particles
of the plastically deformable medium in passing through the boundary S0 is continuous. In the plastic-flow region,
the medium flows around the solid spherical particle on all sides. On the front surface of the particle r = R

(−π/2 6 θ 6 π/2), the shear stresses equal the yield point of the medium in shear: σρθ = τs. On the back surface
of the particle r = R (π/2 6 θ 6 3π/2), spalling of the medium is possible; therefore, tangential stresses on this
surface can be zero.
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Fig. 1. Pattern of particle motion in a plastic medium.

Fig. 2. Pattern of the flow around a solid particle by a plastic medium.

Using the boundary conditions
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for the plastic-flow region, we introduce the kinematically admissible velocity field

vr = v(t)
1
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1
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sin θ, vϕ = 0,

where α = R0/R is the varied parameter depending on the position of the plastic-region boundary.
The velocity field of the solid particle in the spherical coordinate system is

vr = v(t) cos θ, vθ = −v(t) sin θ, vϕ = 0.

Taking into account that vϕ = 0, vr 6= vr(ϕ), and vθ 6= vθ(r, ϕ), we write the components of the acceleration vector
in the spherical coordinate system as follows:

wr =
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
,

wθ =
∂vθ
∂t

+
vθ
r

∂vθ
∂θ

+
vrvθ
r
, wϕ = 0.

The strain rates in the spherical coordinate system have the form
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For the velocity field introduced, after computations, we obtain

ξrr = −2v(t)f(r, α) cos θ, ξθθ = ξϕϕ = v(t)f(r, α) cos θ,

ξrϕ = ξθϕ = 0, ξrθ = −(1/2)v(t)f(r, α) sin θ,
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where f(r, α) = α2R2/((α2 − 1)r3). The volume of the medium does not change in the plastic-flow region:

ξ = ξrr + ξθθ + ξϕϕ = 0.

The intensity of the shear strain rate is determined by the expression

H =
√

(2/3)[(ξrr − ξθθ)2 + (ξθθ − ξϕϕ)2 + (ξϕϕ − ξrr)2] + 4(ξ2
rθ + ξ2

θϕ + ξ2
ϕr).

For the chosen velocity field, we have

ξθθ = ξϕϕ = −ξrr/2, ξrϕ = ξθϕ = 0.

Then,

H = 2
√

3ξ2
θθ + ξ2

rθ = v(t)f(r, α)
√

12 cos2 θ + sin2 θ ≈ 2
√

3v(t)f(r, α)|cos θ|.

To determine the radius of the plastic-flow region, we solved a variational problem with the use of the
variational equation of the principle of virtual velocities and stresses. Taking into account the above-mentioned
features of the kinematically admissible velocity field and neglecting the specific mass forces, we obtain

I =
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ρ0wiv
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where
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[∆vθ] is the difference in the tangential component of the velocity vector on the surfaces S0 and S1 bounding the
plastic-flow region and the solid spherical particle; Ω0 and Ω1 are the volumes of the spherical layer (for the virtual
mass moving together with the particle) and particle, respectively.

The components of acceleration in the functional are not varied; therefore, to eliminate indeterminacy in
calculating the functional I2, they are represented in the form of the following functions:
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Here α∗ = R∗/R, in contrast to α = R0/R, is not a varied parameter. It is assumed that α∗ characterizes the
position of the real boundary of the plastic-flow region.

As a result, the following expressions are obtained:
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After calculating the integrals, the functional I is represented in the form of a dimensionless function of the
varied parameter α
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where

q0 = − 4
3
√

3
ρ0

τs
R
dv

dt
> 0, q1 = − 4

3
√

3
ρ1

τs
R
dv
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If the densities of the deformable medium ρ0 and the particle ρ1 are identical, then q1 = q0 = q.
The functional Ĩ with varied α should take the minimum value. In this case, the condition ∂Ĩ/∂α = 0 is

satisfied. From the source theorems [1], it follows that, in a state close to the real one, we have

Ĩ[α∗] = inf
q(dv/dt)>0

Ĩ(α) ≈ 0. (3)

It is also known that α = α∗ in the real state.
Thus, we have three equations for determining three unknowns entering into Eq. (2). It should be noted

that q0 and q1 in (2) are functions of one parameter, namely, the acceleration w(t) = dv/dt.
The resultant system of equations is solved by the method of successive approximations with the use of an

iterative procedure.
The system is solved most simply if the mechanical characteristics (yield point and density) of the medium

coincide with those of the implanted particle. Then, functional (1) takes the form

Ĩ(α) = F1(α)[F2(α)− F3(α∗, α)q(t)]− q(t), (4)

where
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α2

α2 − 1
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For α = α∗ (which corresponds to the real state), with allowance for Eq. (3), we can assume that Ĩ(α∗) = 0.
Then, it follows from Eq. (4) that

q(t) ≈ q(α∗) = F2(α∗)/(F3(α∗, α∗) + 1/F1(α∗)).

Substituting this result into (4), we obtain the functional of one varied parameter

Ĩ(α) = F1(α)[F2(α)− F3(α∗, α)q(α∗)]− q(α∗).

The variational problem considered has a solution that satisfies all required conditions, which is confirmed by
the calculation results shown in Fig. 3. Among the set of curves Ĩ(α, α∗) = Ĩ(α)|α∗=const, only one has a minimum
corresponding to the point α = α∗, and Ĩ(α∗, α∗) = 0.

If the densities of the implanted particle and the medium are identical, it follows from the results obtained
that α∗ = R0/R = 3 and q∗ = q(α∗) = 5.344. Thus, the specific deformation force decelerating particle motion in
the dynamic problem is 1.6 times smaller than the force necessary for particle motion with a constant velocity.

Knowing the values of α∗ = R∗/R and q∗ = q(α∗), from the equation

q∗ = − 4
3
√

3
ρ1

τs
R
dv
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we find the relation for calculating the acceleration of the solid particle

w(t) =
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dt2
= −3

√
3
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.
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Fig. 3. Results of the solution for α∗ = 2.8 (1), 3 (2), and 3.2 (3).
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Fig. 4. Results of the solution for q∗ = 1 (1), 2.5 (2), and 5.344 (3).

The calculation results are plotted in Fig. 4. The calculations were performed for the case of identical densities of
the solid particle and the plastically deformed medium (ρ1 = ρ0).

We calculate the distance covered by the particle before it stops completely by solving the equation

uz = zm − z0 = v2
1/(2Q),

where Q = (3
√

3/4)q∗τs/(ρ1R), with the initial conditions ż(0) = v1 and z(0) = z0.
As an example, we determine the distance uz covered by the solid particle of radius R = 10−3 m with an

initial velocity v1 = 2000 m/sec in a medium with a yield point in shear τs = 300 MPa for ρ1 = ρ0 = 7800 kg/m3.
In the course of the solution, we obtain the value uz = 3.74 · 10−3 m, i.e., uz = 3.74R.

We determine the influence of variation of the particle radius on the distance covered by the particle. If the
particle is not absolutely solid, then it experiences the action of the friction force and is subjected to wear when
moving in a continuous medium. The particle mass and size decrease. Obviously, the change in the mass and size
of the moving particle can exert a significant effect on the law of its motion and on the distance covered by the
particle. Therefore, we have to consider some of the existing models of friction and wear.
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TABLE 1

i vi, m ∆uzi, mm Ri, mm uzi, mm

1 1900 0.703 1.000 0.703
2 1700 0.624 0.992 1.327
3 1500 0.551 0.985 1.878
4 1300 0.473 0.980 2.351
5 1100 0.399 0.975 2.750
6 900 0.325 0.971 3.075
7 700 0.251 0.968 3.326
8 500 0.179 0.967 3.505
9 300 0.107 0.966 3.612
10 100 0.036 0.966 3.648

The model of contact interaction of rubbing surfaces in the case of slipping friction was proposed in [12],
where it was assumed that contact stresses are a consequence of interaction of wedge-shaped roughness elements
of rubbing surfaces. As the normal stresses increase and the surfaces are shifted with respect to one another, new
roughness elements come into contact, which actually increases the contact area, which cannot exceed a certain
fraction of the contact-surface area. At a certain stage of the process, the increase in the actual contact area become
slower, which slows down the growth of contact shear stresses with a further continuous increase in normal stresses
pn. In the model considered, the contact stresses have a certain limit. Such a model agrees with the results of
theoretical and experimental studies [13–17] and others. In the present work, the action of dry friction with limiting
high normal pressures is assumed. In this case, it is possible to use the known Prandtl–Siebel friction law

τc = fτs,

where τs is the yield point of the deformed medium; the coefficient of proportionality f takes the values 0 or 1
(f = 1 at the front surface of the particle, where the normal compression stresses act).

In the case of surface friction, the basic form of wear is attrition due to the fatigue state of the contact
surface. The intensity of such wear increases with increasing normal and shear contact stresses and decreases with
increasing velocity of displacement of rubbing surfaces. These factors are taken into account in the wear model of [18]
in which the wear intensity Ih = dh/dS (h is the linear wear and S is the relative displacement of the solid particle
and plastically deformed medium) is proportional to normal pressure and shear stress, increases with increasing
temperature, and is inversely proportional to the velocity of relative slipping and hardness of the material being
processed. The mathematical model of boundary friction and wear for heavily loaded slipping pairs is developed in
[19, 20].

It should be noted that the existing models describe the processes of wear during boundary friction, i.e.,
it is assumed that there is some lubrication that partly separates the rubbing surfaces. In the process considered,
we have dry friction accompanied by adhesion interaction of contact surfaces and their attrition. In this case, for
calculating the change in the particle radius R during particle motion along the z axis (see Fig. 1), we use the
differential equation

dR

dz
= k0

( τs
τs1

+ k1
v

v∗

)
,

where τs1 is the yield point of the particle, v/v∗ is the relative velocity of the particle (v∗ = 1000 m/sec), and k0

and k1 are empirical coefficients.
To determine the change in the radius of the moving particle, we have the following equation in finite

differences:

Ri+1 = Ri − k0(τs/τs1 + k1vi/v∗)∆uzi, i = 1, 2, 3, . . . , n.

Here ∆uzi is the distance covered by the particle at the ith step and n is the total number of time steps simulating
particle motion.

To find ∆uzi, we use the equation

∆uzi =
2

3
√

3

(
n− i+

1
2

)(v1

n

)2 ρ1Ri−1

q∗τs
.
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The distance covered by the particle until its complete stop is determined as

uz =
n∑
i=1

∆uzi.

As an example, we determine the distance covered by the solid particle (R = 10−3 m, v1 = 2000 m/sec)
in a medium with a yield point in shear τs = 300 MPa for ρ1 = ρ0 = 7800 kg/m3 and τs1 = τs. The empirical
coefficients have the values k0 = 10−2 and k1 = 10−1. The calculation results are listed in Table 1.

As a result of calculations, we obtained the value uz = 3.65 · 10−3 m. Thus, the particle whose diameter
varies as a result of attrition covers a smaller distance before its complete stop than the absolutely solid particle.
The ratio of the covered path to the particle radius increases by 1%.
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